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RACT: the nonlinear ranc}om response of the single-degree-of freedom system with the
ABi_‘;T hysteretic gestaring force characteristic is dealt with. The non-white e%ei-
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The seismic acceleration has, 1n general,
+he complicated waveform and, 1n many cases,
is assumed as the random process. The white
oise is often taken as the simplest ideal-
ization for it on the basis that the power
spectral density of the seismic acceleration
does not depend on the fregquency 1in an
approximate sense. This constant spectral
density makes the mathematical treatement
easy. There 1s a high possibility to get
the analytical solution in a simple form.
It 1s useful to know fundamental properties
°f nonlinear random response of structures
Sim)g:ted to the white excitation. Many
jz:gyles having this objective have been al-
premizfﬂmed. The writer has also
(Mat | the paper with this purpose

I“s-tlsfuma 1984) .
ew‘;ﬁr ;0_ get the realistic response

7 Ior structures with high frequen-

n tmmi{: the spectrum which more f£ ::Lts
shoulq pe usedy of th? actual ground motion

' - In this sense the Markoffian

aatme

fi.ltﬁ_r ;ﬁtput of the first-order linear

mtﬁﬁllatj_ f’ the white input. The most
in the ?"-’mt of the white idealization

e cact that even the high
.%nents have the constant
T ety The filter to get the
1de:ieetrm is a low-pass one. The
#;ﬁrﬁ; '3t¥'mﬂn0tonous1y decreases as

ii?;?”ffimwrﬁaﬂﬁé;”which is more

?j.fV'tggmﬁﬂEl'ef'seismicmﬂtion

The attention ls focussed on the time change of equivalent natural frequency
ysteretically dissipated energy. The approximate solutions for them are
closed forms on the basis of the theoretical investigation. They are compared
digital estimates obtained from the Monte Carlo simulation. The agreements

he both are satisfactory over the wide ranges of related parameters.

than the white spectrum. The fact that the
Markoffian spectrum has no peak will make

the estimation and the character of response
simple. The above-mentioned advantages are
reasons why the Markoffian spectrum 1is
adopted herein.

The structure having the high frequency
does not usually receive the great amount
of energy from the seismic motion in the
elastic stage. The reduction of equivalent
frequency caused by the damage, however,
makes the input energy greater, which
results in the increase of damage and
therefore in the further decrease of fre-
gquency in a progressive way. One of the

purposes of this paper 1s to get fundamental

information about such phenomenon.

The structure is idealized by the mass-
spring system having single degree of
freedom. The restoring force has the slip~
type hysteretic characteristic. This
hysteresis is chosen for analysis, because
this is the representative of the brittle
pehavior of structures which 1is accompanied

by the degrading stiffness.

The time changes of the equivalent natural

frequency and the hysteretically dissipated
energy are theoretically investigated with
the proper assumptions. The solutions are

expressed in the explicit forms. The
validity of solutions are numerically
verified by the Monte Carlo simulation.

2 MARKOFFIAN SPECTRUM

The spectral density function of the
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The total power p of the Markoffian

spectrum is equal to

" s(w)dw . (2)
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This spectrum is depicted in Fig.l.
The random noise having the Markoffian

spectrum is simply called "Markoffian noise"
hereafter. The Markoffian noise approaches
the white noise with the power density
level Sg under the condition Wy,

The averaged velocity response spectrum

for the undamped case St .0 of the
Iid‘::lrkoffian r:loise bec:c:'rnems}r as a lower soild
Bin? é{awn in Fig.2, where Wy, 1s taken as
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Japanese Building Code. It indicates the
Markoffian spectrum is appropriate as the
model which characterizes the seismic
motion as a whole.

3 INPUT-OUTPUT SYSTEM

It is assumed that the undamped single-
degree-of-freedom system rested on the
Jround is suddenly subjected to the
Markoffian nojise which is taken as the
Jtound acceleration. The equation of mot 10"
1S given by

(4)

X + L(x,®) = <U(tIN(L) ,

wWher fon v ‘
and = X 18 the displacement of the systeél
Mmeans the derivative with reSPect

time ;i U ( ; '
. t+ : n
defineq by ) is the unit step functif
[ O
1

i 0 ﬁ}

~e

U{t) =

t
v
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F c1ip-type hysteresis
Fi9-

the stationary Markoffian

esents a restoring force

h has the slip-type hysteretic
as illustrated in Fig.3.

+ic stiffness after yielding 1is
gero. The mass rested on the origin
the l1ines with arrows indicated
The loops do not intersect

when the restoring force becomes

trhe displacement progresses towards
::zoiast slip displacement without the
-hange of restoring force. This is the
typical pattern of the character of
tructures with X-type steel bracings. The
forced concrete shear walls

ﬁﬁmg-mmirein
also have the similar property where the

slippage takes place more Or laegt. Oy A

and Wy given in the figure are the yield
acceleration, vield displacement and natural
angular frequency in the elastic region,
respectively. The following relation holds

among them:

) repr
whiC
Cteristic

mutuﬁlly :

(6)

zzzizaidlz the goefficient by which the
By o vaivlatlcn is multiplied to get the
CIBERE e ue. gosenblueth and Bustamante

€ estimated the wvalue of a as

a 2.348

i 1% SR '
l§|ls conslidered that the expected time when
TR 3 reaches the yield displacement a/m02

18 egual to t H :
. B+ .Hence the foll
equation holds: owing

&2

a2ns(m0)m02

£y

(8)

Now 1t i1s convenient to define the
following nondimensional guantities:

& 1% TS0 o
TO 2T
W
£ = OSO
= q 2 (10)
and
e .
h
TQ 1S t, normalized by the natural period

Th in the elastic stage. £ stands for the
nondimensional input intensity. Vv 1s the
ratio of the natural angular frequency in
the elastic stage to the half-power point
of the Markoffian spectrum.

The substitution of Eqg. (1) 1into the right
side of Eg.(8) and the application of Egs.
(9)s, (10) and (11) to Eq. (8) gives the
followling nondimensional time

4 EXPECTED TIME OF ELASTIC LIMIT OF RESPONSE 1limit:

The initial conditions of Eg. (4) are x=x=0
when t=0. In the non-stationary response,
the system behaves elastically in the early
;r;'t‘?- The expected time the response

ves at the elastic limit, which is

denoted by t,., i - .
as follows- gr is approximately estimated

frmeqﬂe? rkoffian spectrum varies gently with
_-idency. The elastic response goes through

e e
arrow-banded process with the expected

Natural =ee
iuu:':n gular frequency w,. Therefore . 5
St equivalent to the response due toO

the whit
White noise with the spectral density

Ry
' ﬁ:a}; m expected maximum absolute value

P

2a2m?E

(12)

5 TIME CHANGE OF EXPECTATION OF EQUIVALENT
NATURAL FREQUENCY

The system goes into the plastic region

when t is greater than tg,

natural fregquenc
this change of frequency

as follows:

The expected cumu
mation per unit time is app .
to ﬁS(me)/(2u) in the case of slip-type
hysteresis shown in Fig.3. Here Ug

the expected e
ncy, which is assumed to

the nonlinear response.

lative plastic defor-

of the elastic

and the apparent

roximately equal

gquivalent natural

The
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Now the following nondimensional quantities
are newly defined:

) (15)
T
and
UJe
B ar. wo (16)

Eaiirzﬁe ratio of the expected equivalent
angul |
ok gular frequency to the elastic
Th | ' |
e application of Egs. (1), (10), (11), (15)

and (16) to E -
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a1thoudgh doct ) T

B when V=0, B in the i,
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ily estimated as - Vs

1
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(20
this is the time change of SR
equivalent natural frequency Und;; :

=2 T'-.II ith—-r

input. gEquaction (20) is also obta:
directly by assigning zero to 1

Negd L
\ ln A
B

- (1g)

¢ TIME CHANGE OF EXPECTATION OF
HYSTERETICALLY DISSIPATED ENERGy

The expectation o the hysteret;
™ - “'"'Ei
LS Zero’ ‘wh%n +

dissipated energy L

energy given to the system is POH;MI
CONSuMeq

exclusively by the hysteresis whep + -
+he following equation will hold* :

-
| ACCorgi,
to the same reason described in Sect: . .
e L1lOon S
dE a
Ry
3 o ST %

Here the following quantity is defi

in order to make E be dimensionlegst

fale
=

T

i o 2%

- E g
A‘ — b O f ™y~
S A 0, 2 3 \L4)

g SEénés for the expectation of cumulative
Cuc ille factor A which is defined as the
tEmu ?tlve plastic deformation devided by
€ yileld displacement.

(125[:})1e application of Egs. (1), (10),(11), {19
nondiand F22) to Eq. (21) gives the followind
M me?51onal expression when S(w) is the
arkof fian spectrum:

g

Y B

J+V2g<

(23)

Dividj
COrrgéggng?th sides of Eq.(23) by the
ing sides of Eq.(17), one gets

—izih_:z o il (zm
df i
M '

dB angd i;?g both sides of this equati®
€grating, there is <:>1:>ta.:i'_1‘!t«‘-‘f'fd

m(1-R) (25)
B -

A o=




e ;; 1un between X and B.
e B givan by Eg.(19) into the
ﬂf'ﬁq.(ZS), one gets

r—1+V ( vﬂ EHET." —1)2+4v?) :

(26)

- the express jon to evaluate the time
. the expectatlﬂn of cumulative

-tg fa,er' A is also the function of
£ " put essgntlally the function
_t 3¢ in the case of B.

S gero to V in BEg.(26), one has
'i - PHRET" . L<7])

2 'identlcal with the expression
as the expectation of

ob ;_ned
uptlllty factor due to the

.:w*ﬂ ﬂise (matsushima, 1980).
w3 eslastic pehavior of the system

xoffian noise 1s
1f the system property
the natural angular frequency
15 kept constant. The response 1s almost
galent +o that due to the white noise

the spectral density S(wo) The
1ine in the figure represents

- dotted

| 1f the system has the nonlinear
., however, the apparent frequency
sed in the inelastic stage. The
the system increases as

an arrow. The response becomes

qmwlmt to that due to the white noise
g;u:h the level Sy, after time elapses to

<ome extent. The upper dotted line
rqreseﬂts this case. The position of wg

in the figure corresponds to the case V= =2,
and therefore S(m } 18 1/5 Of 5,5. The
difference between these two levels,
hmm. rapidly becomes much less after
the system goes into the inelastic region.
This situation 1is illustrated from the
_viewpoint of the time change of cumulative
mﬁ? factor in Fig.>5. The figure 1is
also drawn for the case v=2. The abscissa
_“ﬂﬂprmt & ¢ ang E. The slope of A
_mmg iﬂ givenby '

i _1'- L e ¥
- R WY 5 u uhmm as the slope Of the
B M ddae. The: lower white neLse
E & iﬁ !‘i.qai corresponds to this
- T Ii t‘he S’fﬂm property 1s
lmg this line.

energy
]mdnﬁﬂfﬂ{by
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Fig.4 Nonlinear response due to white
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Fig.5 Time change of cumulative ductility

factor

assinging zero to Vv in Eq. (28) . The upper
white noise indicated 1n Fig.4 corresponds
to this case. The solid line is obtained

by assigning 2 to V in Eg.(26). It 1s
recognized that Eqg. (26) reasonably eXpresses
the nonlinearity of relevant hysteretic
system and the character of Markoffian

spectrum.

of - £he hysteretlcally
umed as zZero,

write, like

The variance Vg
dissipated energy can be ass

when t < tj5- It is possible toO
in the case of E, as

dv
% - = (29)

e T Z“S(we)oi ’
hen t 2 t Here O, represents the standard
a of locity %. The
deviation of the resPonse ve
following quantity ijg defined to make Oy
be dimensionless:
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43 av, 4 § - ~a digital simulation has been}xﬁf
T T1+Vv 2B T oydar to verify analytica} E—'X}_)r ~Omess
3 the e ve. Fifty sample S8EY o
s friding poth side ¥ B (17)» OO having the Markoffian spectrum B
; . '®) ) Dag
corresponding Sides ShnaEated on the DAS.S Of stochagy; o
| :mﬂiz (32) ~oncept- The nonstationary ﬂoﬁlhnmt
o R 33 : responses due to them have beeﬂlﬂmmr-
- +1at =4 X
g che B sesuita.  enth,
gqubjecte ) bee :
when the system ;fse, +he following gince the EXPECtath:)n of equj‘val&nt
stationary Whltemztsushlmar 1980) : natural frequency ratio B, the —XPectay;
equation holds ( (33) of Cmulative ductility factor X i aElﬁ.n
: ]
o e BYG . variance Vy, are functions of v, ; e
X a-t, A-T and V,-T relations have ..

investigated with parameters vy 354 .
the nondimensional time definegd 1
The values of v have been taken ;. )
/ 3 (34) and 3. The case v=0 corresponds tq 4
iy . ek : white noise, and therefore the gpe.,
density at the natural freguenc
to Sy from the outset. The initja

he case€ of
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e
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This can be extended D T
Markoffian input as

I...l

b is a constant which depends on the

restoring force characteristic. .
of b will be determined numerically, since

it is quite difficult to obtain 1t in an

The value of spectral density for cases -

are respectively 1/2, 1/5 and 1/10
The values of £ have been taken as

6. 03 and O.1.

The B-T relations with a parameter .
displayed in Figs.6 (a)-(c) for three
gifferent £'s. The soild lines represent
analytical solutions given by Eq.*(i-:r-.. ;}_E
dotted lines with points close to thenm
stand for associated simulation estima
The equivalent natural frequencies in the

digital simulation have been evaluated

analytical way. ‘
Substitution of Eq. (34) into the right

side of Eqg.(32) gives

:‘r';

-

By 2mb 2E

dR B2(1+v2B2)

(35)
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Multiplying both sides of Eqg.(35) by 4R
and integrating, one gets

ment response crosses the time axis.

= 1-B ~ A5
5 g 2“b25[ B x -V (tan 1‘»J—tan lvB):[ :
frequency corresponding to the number of

(36) Crossing within the time interval of fouw
units of nondimensional time T have been
This is the relation between v g ass d . IR
€Xpression of vy aoadnak o g A and B. The umed as the equivalent natural frequent
: T 1s obtained by at the central time of the relevant

interval. The time intervals have been Mo
allv 3 L ap SUccessively by two units of T and assoct”
ears indis ; ,

Y In the expression of Vi S Individu- ated numbers of crossing have been counted

~ It is under se figures hoV
n Eq. (3 stood from these 1igu :
Eq ( 6)1' One has B d&(:reases as €T increases. The dependeme

o On V 1is caused by the difference of
R (37) ZSSOC:‘J.ated initial values of spectral
°N81ity. The dependance diminishes as :
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et;ie;tef tZtlnnu]-.ative'ductility factors in
ks tﬁe simulation have been estimated
CMht-ivenzemle average of sample

every oneemlilitillty f.?ctorg obtair}ed by
Imﬂtono : ?f nondimensional time T.
Fita %tti::s Y increases as T increases.
TS g 1333 as v increases, but the
. ue to v diminishes with

Ncreagj :
in theslng time. This trend is similar to

e
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Fig.7 Time change of expectation of
cumulative ductility factor

the case of A. The value of b appearing in

the approximate solution has been estimated
from the simulation results of the case of
white input. The most probable value has

been evaluated by applying tre least square

method to the part of T lying between 10
and 40 which is considered as stationary.

ans the results, 234 '5.64 and 4.72 have '
been obtained as the values of b for £ of
0.025, 0.05 and s e rgspectively.
t+hose values are Ire
other, the simple average
ags b as follows:
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